GROUPE

périnition

Un groupe est un ensemble E muni d'une opération * vérifiant :

1)
$$\exists e \in E/\forall x \in E, x * e = e * x = x$$
 Existence d'un élément neutre pour *

2)
$$\forall x, y, z \in E, x * (y * z) = (x * y) * z$$
 Associativité de l'opération *

3)
$$\forall x \in E, \exists x' \in E / x * x' = x' * x = e$$
 Existence d'un **inverse** pour tout $x \in E$

On rappelle que les symboles \forall et \exists sont appelés respectivement "quantificateur universel" et "quantificateur existentiel".

Le symbole \forall se lit "quel que soit..." ou encore "pour tout..."

Le symbole ∃ se lit "il existe...

Le symbole ∃! se lit "il existe un unique...

Dans un raisonnement logique, ces quantificateurs peuvent être conjointement utilisés avec des connecteurs logiques tels que "et", "ou", "\Rightarrow" et "\Rightarrow", par exemple.

groupe abélien

Un groupe abélien est un groupe dit **commutatif** sur lequel l'opération * vérifie :

$$\forall x, y \in E, x * y = y * x$$
 Commutativité de l'opération *

Histoire

Les noms de nombreux et illustres mathématiciens sont attachés à la théorie des groupes : ceux de **Évariste Galois** et de **Niels Henrik Abel** sont indissociables de l'histoire des groupes.

EXECICES

- 1) L'ensemble des entiers naturels est-il un groupe pour l'opération d'addition ?
- 2) Les ensembles \mathbb{Z} , \mathbb{Q} et \mathbb{R} sont-ils des groupes pour l'addition ?
- 3) L'ensemble Z est-il un groupe pour la multiplication ?
- 4) L'ensemble des vecteurs du plan est-il un groupe pour l'addition vectorielle ?
- 5) Considérons les couples de réels de la forme (1,2) et notons Id la permutation qui au couple (1,2) associe (1,2), puis σ la permutation qui au couple (1,2) associe (2,1).

On note la permutation Id sous la forme :
$$\begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix}$$
.

On note la permutation
$$\sigma$$
 sous la forme : $\begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$.

Considérons l'ensemble $E = \{Id ; \sigma\}$ muni de l'opération de composition \circ des permutations.

a. Recopier et compléter le tableau ci-dessous (composition ligne par colonne) :

0	Id	σ
Id		
σ		

- b. (E, •) possède-t-il un élément neutre?
- c. L'opération est-elle associative?
- d. Tout élément de E possède-t-il un inverse?
- e. L'opération est-elle commutative?
- f. Quelle est la structure de l'ensemble E muni de l'opération ?
- 6) Considérons l'ensemble $E = \{-1, 1\}$ muni de la multiplication \times .
 - a. Recopier et compléter le tableau ci-dessous :

×	-1	1
-1		
1		

- b. (E, \times) possède-t-il un élément neutre?
- c. L'opération × est-elle associative ?
- d. Tout élément de E possède-t-il un inverse?
- e. L'opération × est-elle commutative?
- f. Quelle est la structure de l'ensemble E muni de l'opération × ?