aurest-ce quiune Fonction ?

Graphe

On appelle graphe Γ tout ensemble dont les éléments sont des couples.

<u>Conséquence</u>: Tout graphe est une partie d'un ensemble produit.

Exemple

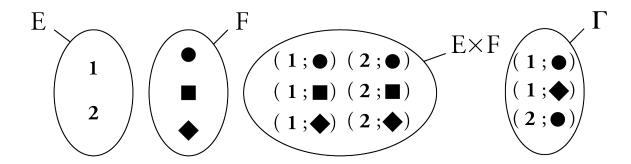
Soient E et F deux ensembles définis par E = $\{1, 2\}$ et F = $\{\bullet, \bullet\}$.

Considérons le produit cartésien de E par F.

On a : E × F =
$$\{(1, \bullet), (1, \blacksquare), (1, \spadesuit), (2, \bullet), (2, \blacksquare), (2, \spadesuit)\}.$$

$$Card(E \times F) = Card(E) \times Card(F) = 2 \times 3 = 6.$$

L'ensemble $\Gamma = \{(1, \bullet), (1, \bullet), (2, \bullet)\}$ est un graphe avec $\Gamma \subset E \times F$.

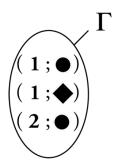


Définition

On qualifie de graphe fonctionnel tout graphe Γ tel que, pour tout x, il existe **au plus** un y vérifiant $(x,y) \in \Gamma$.

Contre-exemple

Le graphe ci-dessus n'est pas fonctionnel car pour l'élément 1, il existe plus de un élément y tel $(1,y) \in \Gamma$.

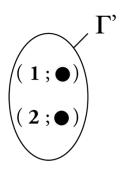


On a : $(1, \bullet) \in \Gamma$ et $(1, \diamondsuit) \in \Gamma$.

Exemple

Le graphe Γ' ci-dessous est **fonctionnel** car pour tout élément x, il existe au plus un élément y tel $(x,y) \in \Gamma'$.

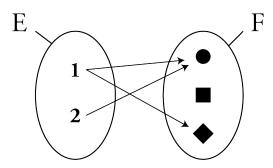
L'ensemble $\Gamma' = \{(1, \bullet), (2, \bullet)\}$ est un graphe avec $\Gamma' \subset E \times F$.



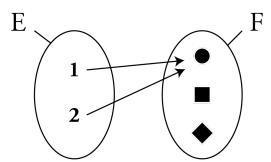
Correspondance

Soient E et F deux ensembles. On appelle correspondance de E vers F ou de E dans F tout triplet de la forme (Γ, E, F) où $\Gamma \subset E \times F$.

Exemple - Correspondance avec le graphe Γ



Exemple - Correspondance avec le graphe fonctionnel Γ'



Chaque élément de l'ensemble de départ a au plus une image. Les éléments de l'ensemble d'arrivée peuvent avoir plusieurs antécédents.

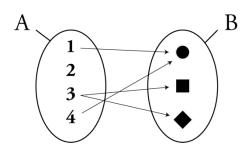
Définition d'une fonction

On appelle fonction toute correspondance dont le graphe est fonctionnel.

Exercice

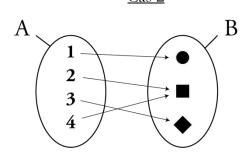
Indiquer dans chaque cas si la correspondance représentée est une fonction.

<u>Cas 1</u>



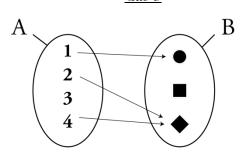
Fonction? Vrai 🗆 / Faux 🗖

<u>Cas 2</u>



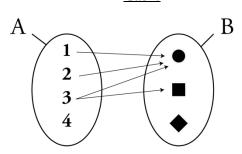
Fonction? Vrai 🗆 / Faux 🗖

<u>Cas 3</u>



Fonction? Vrai 🗆 / Faux 🗖

<u>Cas 4</u>



Fonction? Vrai 🗆 / Faux 🗖

Ensemble de définition

Soit Γ un graphe. Il existe un et un seul ensemble noté $pr_1\Gamma$ possédant la propriété suivante :

$$\forall x \ (x \in pr_1\Gamma) \Leftrightarrow (\exists y \ (x,y) \in \Gamma)$$

De même, il existe un et un seul ensemble noté $pr_2\Gamma$ possédant la propriété suivante :

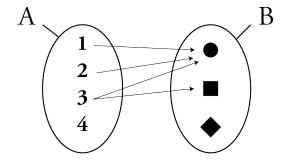
$$\forall y (y \in pr_2\Gamma) \Leftrightarrow (\exists x (x, y) \in \Gamma)$$

Dans une correspondance (Γ, E, F) :

- E est l'ensemble de départ,
- $pr_1\Gamma$ est l'ensemble de définition,
- F est l'ensemble d'arrivée, et
- $-pr_2\Gamma$ est l'ensemble image ou ensemble des valeurs.

Exemple

On considère la correspondance (Γ, A, B) ci-dessous :



L'ensemble de départ est $A = \{1, 2, 3, 4\}$

L'ensemble de définition est $pr_1\Gamma = \{1,2,3\}$

L'ensemble image est $pr_2\Gamma = \{\bullet, \blacksquare\}$.

L'ensemble d'arrivée est $B = \{ \bullet, \blacksquare, \spadesuit \}$.

Exercices d'application

- 1. On considère le graphe $\Gamma = \{(x,y) | y = x^2\} \subset \mathbb{R} \times \mathbb{R}$ et la correspondance $(\Gamma, \mathbb{R}, \mathbb{R})$.
- 1.1. Expliciter l'ensemble de départ, l'ensemble de définition $pr_1\Gamma$, l'ensemble image $pr_2\Gamma$ et l'ensemble d'arrivée de la correspondance.
- 1.2. La correspondance est-elle une fonction?

- 2. On considère le graphe $\Gamma' = \{(x,y) | y = \sqrt{x} \ \forall x \ge 0\} \subset \mathbb{R} \times \mathbb{R}$ et la correspondance $(\Gamma', \mathbb{R}, \mathbb{R})$.
- 2.1. Expliciter l'ensemble de départ, l'ensemble de définition $pr_1\Gamma'$, l'ensemble image $pr_2\Gamma'$ et l'ensemble d'arrivée de la correspondance.
- 2.2. La correspondance est-elle une fonction?
- 3. Soit le graphe $\Gamma'' = \left\{ (x,y) | y = \frac{1}{x} \ \forall x \neq 0 \right\} \subset \mathbb{R} \times \mathbb{R}$ et la correspondance $(\Gamma'', \mathbb{R}, \mathbb{R})$.
- 3.1. Expliciter l'ensemble de départ, l'ensemble de définition $pr_1\Gamma$ ", l'ensemble image $pr_2\Gamma$ " et l'ensemble d'arrivée de la correspondance.
- 3.2. La correspondance est-elle une fonction ?
- 4. Soit le graphe $\mathcal{G} = \left\{ (n, u) | u = (2n + 1) \frac{\pi}{3} \right\} \subset \mathbb{N} \times \mathbb{R}$ et la correspondance $(\mathcal{G}, \mathbb{N}, \mathbb{R})$.
- 4.1. Expliciter l'ensemble de départ, l'ensemble de définition $pr_1\mathcal{G}$, l'ensemble image $pr_2\mathcal{G}$ et l'ensemble d'arrivée de la correspondance.
- 4.2. La correspondance est-elle une fonction?
- 5. Soit le graphe $G' = \{(x, y) | y = e^x\} \subset \mathbb{R} \times \mathbb{R}$ et la correspondance $(G', \mathbb{R}, \mathbb{R})$.
- 5.1. Expliciter l'ensemble de départ, l'ensemble de définition $pr_1\mathcal{G}'$, l'ensemble image $pr_2\mathcal{G}'$ et l'ensemble d'arrivée de la correspondance.
- 5.2. La correspondance est-elle une fonction?

Définition d'une application

On appelle **application** toute **correspondance** dont le **graphe est fonctionnel** et dont l'ensemble de définition **coïncide** avec l'ensemble de départ.

Autrement dit, une application de E dans F (E vers F) est une correspondance $f = (\Gamma, E, F)$ telle que $\forall x \in E \exists ! y \in F \mid (x, y) \in \Gamma$.

Étant donné $x \in E$, l'unique élément de F qui lui est associé se note f(x). On dit que x est un antécédent, par forcément unique, de cet élément de F.

Exercices d'application

1. Soit le graphe $\Gamma = \left\{ (x,y) | y = \frac{1}{r} \ \forall x \neq 0 \right\} \subset \mathbb{R} \times \mathbb{R}$ et la correspondance $(\Gamma, \mathbb{R}^*, \mathbb{R})$.

La correspondance est une fonction. Vrai □ / Faux □

La correspondance est une application Vrai 🗖 / Faux 🗖

2. Soit le graphe $\Gamma = \left\{ (x,y) | y = \frac{1}{x} \ \forall x \neq 0 \right\} \subset \mathbb{R} \times \mathbb{R}$ et la correspondance $(\Gamma, \mathbb{R}, \mathbb{R})$.

La correspondance est une fonction. Vrai \square / Faux \square

La correspondance est une application Vrai \Box / Faux \Box

3. Soit le graphe $\Gamma = \{(x, y) | y = \sqrt{x} \ \forall x \ge 0\} \subset \mathbb{R} \times \mathbb{R}$ et la correspondance $(\Gamma, [0; +\infty[, \mathbb{R}).$

La correspondance est une fonction. Vrai □ / Faux □

La correspondance est une application Vrai \Box / Faux \Box

4. Soit le graphe $\Gamma = \{(x, y) | y = \sqrt{x} \ \forall x \ge 0\} \subset \mathbb{R} \times \mathbb{R}$ et la correspondance $(\Gamma, \mathbb{R}, \mathbb{R})$.

La correspondance est une fonction. Vrai 🗖 / Faux 🗖

La correspondance est une application Vrai □ / Faux □

5. Soit le graphe $\Gamma = \{(x,y) | y = e^x\} \subset \mathbb{R} \times \mathbb{R}$ et la correspondance $(\Gamma, \mathbb{R}, \mathbb{R})$.

La correspondance est une fonction. Vrai □ / Faux □

La correspondance est une application Vrai \(\D\) / Faux \(\D\)

6. Soit le graphe $\Gamma = \left\{ (x,y) | y = (2x+1) \frac{\pi}{3} \right\} \subset \mathbb{R} \times \mathbb{R}$ et la correspondance $(\Gamma, \mathbb{N}, \mathbb{R})$.

La correspondance est une fonction. Vrai \(\Delta\) / Faux \(\Delta\)

La correspondance est une application Vrai \(\D\) / Faux \(\D\)