équation réduite de droite

Soient A(-2; -10) et B(4; 2) deux points d'une droite (D) dans un repère orthonormé $(0; \vec{\imath}, \vec{\jmath})$. Déterminer l'équation réduite de la droite (D).

Déterminons *(1 point)* l'équation réduite de la droite (D) passant par A(-2; -10) et B(4; 2) *(1 point)*

L'équation réduite de la droite (D) s'écrit sous la forme y = mx + p. (1 point) Je sais calculer la pente d'une droite passant par deux points connus, donc je précise que je vais calculer la pente m et je le fais.

Déterminons m (0,5 point)

On a:
$$m = \frac{y_B - y_A}{x_B - x_A} (1 \text{ point}) = \frac{2 - (-10)}{4 - (-2)} = \frac{2 + 10}{4 + 2} = \frac{12}{6} = 2 \text{ (1 point)}$$

Il me reste à calculer p. J'affiche mon objectif.

Déterminons p (0,5 point)

Je sais traduire mathématiquement l'appartenance d'un point à une droite d'équation spécifiée, donc je le fais et j'obtiens l'ordonnée à l'origine p.

$$F(4; 2) \in (D)/y = 2x + p$$
, donc: $2 = 2(4) + p$ (1 point), d'où: $2 = 8 + p$
Ainsi: $p = 2 - 8 = -6$ (1 point)

Je réponds à la question posée en donnant l'équation réduite de la droite (D). En résultat, (D) a pour équation réduite y = 2x - 6. (1 point)

Grille de notation détaillée (1 point pour la qualité de la copie)

Articulation du raisonnement	Notation	Note affectée
Déterminons l'équation réduite de la droite (D)	1 point	
A(-2; -10) et B(4; 2)	1 point	
y = mx + p	1 point	
Déterminons m	0,5 point	
Formule $m = \frac{y_B - y_A}{x_B - x_A}$	1 point	
Calcul de m. On obtient 2	1 point	
Déterminons p	0,5 point	
$B(4; 2) \in (D)/y = 2x + p$, donc: $2 = 2(4) + p$	1 point	
Calcul de p. On obtient - 6	1 point	
Présentation du résultat : $y = 2x - 6$	1 point	

Note: /10