PROBLÈME

Dans le plan rapporté à un repère orthonormé $(0; \vec{l}, \vec{j})$, on considère la droite (D) d'équation cartésienne ax + by + c = 0 et le point $M(x_0; y_0)$. On note $(x_H; y_H)$ le projeté orthogonal du point M sur la droite (D).

- 1. Représenter par un schéma clair et soigné les hypothèses du problème.
- 2. A l'aide des hypothèses de l'énoncé, déterminer les coordonnées d'un vecteur \vec{n} orthogonal à la droite (D).
- 3. Exprimer \overrightarrow{HM} en fonction des données de l'énoncé.
- 4. En exprimant l'appartenance du point H à la droite (D), déterminer une relation (1) entre les coordonnées x_H et y_H du point H et les réels a, b etc.
- 5. En exprimant la colinéarité des vecteurs \overrightarrow{HM} et \overrightarrow{n} , déterminer une relation (2) entre x_0 , y_0, x_H, y_H, a , b et c.
- 6. Montrer que les relations (1) et (2) sont équivalentes au système de deux équations linéaires à deux inconnues x_H et y_H suivant :

$$\begin{cases} ax_H + by_H + c = 0 \\ bx_H - ay_H = bx_0 - ay_0 \end{cases}$$

- 7. Déterminer x_H et y_H en fonction de x_0 , y_0 , a, b et c.
- 8. Démontrer que $x_H x_0 = -\frac{a}{a^2 + b^2} (ax_0 + by_0 + c)$.
- 9. Exprimer $y_H y_0$ en fonction de x_0, y_0, a , b et c.
- 10. En déduire $\|\overrightarrow{HM}\|^2$.
- 11. On note |x| la distance à zéro du nombre réel x ; |x| se lisant "valeur absolue de x".
 - 11.a. Déterminer |-3| et |5|.
 - 11.b. Résoudre sur l'ensemble des réels positifs l'équation $x^2 = a^2$ où a est un réel quelconque.
- 12. Montrer que $\|\overrightarrow{HM}\| = \frac{|ax_0 + by_0 + c|}{\sqrt{a^2 + b^2}}$