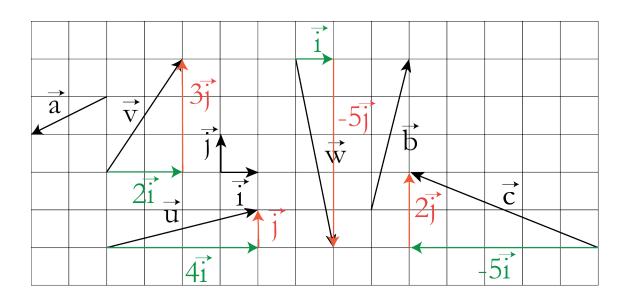
Activité - vecteurs

1. Déterminons les coordonnées vectorielles de chacun des vecteurs représentés.



D'après la figure, on a : $\vec{u} = 4\vec{i} + \vec{j}$.

On dit que le vecteur \vec{u} a pour coordonnées vectorielles $\binom{4}{1}$ dans la base (\vec{l}, \vec{j}) .

Par <u>abus de langage</u>, nous n'hésiterons pas à écrire : $\vec{u} = \binom{4}{1}$, étant implicite le fait que la base considérée est la base (\vec{l}, \vec{j}) .

De plus, $\vec{v} = 2\vec{i} + 3\vec{j}$. Le vecteur \vec{v} a pour coordonnées vectorielles $\binom{2}{3}$.

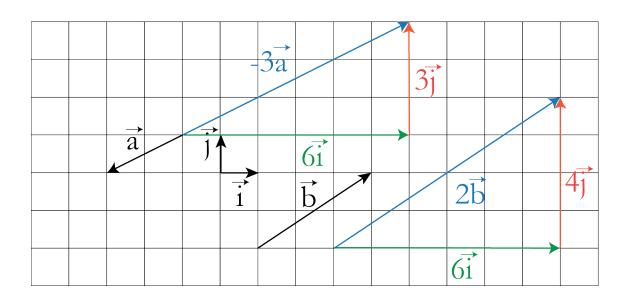
Par ailleurs : $\vec{w} = \vec{i} - 5\vec{j}$. Le vecteur \vec{w} a pour coordonnées vectorielles $\binom{1}{-5}$.

Enfin, on a : $\vec{a} = -2\vec{i} - \vec{j}$, $\vec{b} = \vec{i} + 4\vec{j}$ et $\vec{c} = -5\vec{i} + 2\vec{j}$.

On dit que nous avons, dans la base (\vec{l}, \vec{j}) , les vecteurs $\vec{a} \begin{pmatrix} -2 \\ -1 \end{pmatrix}$, $\vec{b} \begin{pmatrix} 1 \\ 4 \end{pmatrix}$ et $\vec{c} \begin{pmatrix} -5 \\ 2 \end{pmatrix}$.

Écrire $\vec{a} = \binom{-2}{-1}$ est accepté mais à la condition de savoir qu'il s'agit là d'un abus de langage commode et que cela signifie que : $\vec{a} = -2\vec{i} - \vec{j}$.

2. Tracé des vecteurs $-3\vec{a}$ et $2\vec{b}$. Voir ci-dessous.



D'après la figure, on a : $\vec{a} = -2\vec{i} - \vec{j}$, $\vec{b} = 3\vec{i} + 2\vec{j}$.

Dans la base (\vec{l}, \vec{j}) , on a donc les vecteurs $\vec{a} \binom{-2}{-1}$ et $\vec{b} \binom{3}{2}$.

Par lecture graphique, on remarque que les vecteurs $-3\vec{a}$ et $2\vec{b}$ ont pour coordonnées respectives $\binom{6}{3}$ et $\binom{6}{4}$.

Ce qui signifie que : $-3\binom{-2}{-1} = \binom{6}{3}$.

De même : $2\binom{3}{2} = \binom{6}{4}$.

Règle de calcul

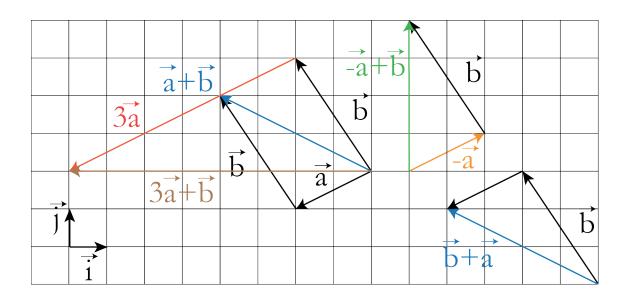
Soit $\vec{u} = x\vec{i} + y\vec{j}$ un vecteur du plan et k un nombre réel.

$$k\vec{u} = k(x\vec{i} + y\vec{j}) = kx\vec{i} + ky\vec{j} = \begin{pmatrix} kx \\ ky \end{pmatrix}$$
 et $k\vec{u} = k \begin{pmatrix} x \\ y \end{pmatrix}$

En résultat :

$$k \binom{x}{y} = \binom{kx}{ky}$$

3. Tracé des vecteurs $\vec{a} + \vec{b}$, $-\vec{a} + \vec{b}$ et $3\vec{a} + \vec{b}$.



D'après la figure, on a : $\vec{a} = -2\vec{i} - \vec{j}$, $\vec{b} = -2\vec{i} + 3\vec{j}$.

Dans la base (\vec{l}, \vec{j}) , on a donc les vecteurs $\vec{a} \binom{-2}{-1}$ et $\vec{b} \binom{-2}{3}$.

Par lecture graphique, on remarque que:

$$\vec{a} + \vec{b} = -4\vec{i} + 2\vec{j} = {\binom{-4}{2}}.$$

$$-\vec{a} + \vec{b} = 4\vec{j} = \binom{0}{4}.$$

$$3\vec{a} + \vec{b} = -8\vec{i} = \binom{-8}{9}$$
.

Or:
$$\vec{a} + \vec{b} = {\binom{-2}{-1}} + {\binom{-2}{3}}, -\vec{a} + \vec{b} = -{\binom{-2}{-1}} + {\binom{-2}{3}}$$
 et $3\vec{a} + \vec{b} = 3{\binom{-2}{-1}} + {\binom{-2}{3}}.$

Ce qui signifie que : $\binom{-2}{-1} + \binom{-2}{3} = \binom{-4}{2}$. De même : $-\binom{-2}{-1} + \binom{-2}{3} = \binom{0}{4}$.

$$\operatorname{Et}: 3\binom{-2}{-1} + \binom{-2}{3} = \binom{-8}{0}.$$

Règles de calcul

Soit $\vec{u} = x\vec{\imath} + y\vec{\jmath}$ et $\vec{v} = x'\vec{\imath} + y'\vec{\jmath}$ deux vecteurs du plan, k et deux nombres réels.

$$\vec{u} + \vec{v} = x\vec{\iota} + y\vec{\jmath} + x'\vec{\iota} + y'\vec{\jmath} = (x + x')\vec{\iota} + (y + y')\vec{\jmath} = \begin{pmatrix} x + x' \\ y + y' \end{pmatrix}$$

et $\vec{u} + \vec{v} = \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} x' \\ y' \end{pmatrix}$

En résultat :

$$\binom{x}{y} + \binom{x'}{y'} = \binom{x+x'}{y+y'}$$

$$\vec{u} - \vec{v} = x\vec{i} + y\vec{j} - (x'\vec{i} + y'\vec{j}) = (x - x')\vec{i} + (y - y')\vec{j} = \begin{pmatrix} x - x' \\ y - y' \end{pmatrix}$$

et $\vec{u} - \vec{v} = \begin{pmatrix} x \\ y \end{pmatrix} - \begin{pmatrix} x' \\ y' \end{pmatrix}$

En résultat :

$$\binom{x}{y} - \binom{x'}{y'} = \binom{x - x'}{y - y'}$$

D'une manière générale :

$$k {x \choose y} + k' {x' \choose y'} = {kx + k'x' \choose ky + k'y'}$$