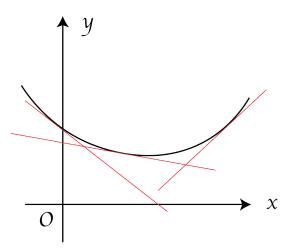
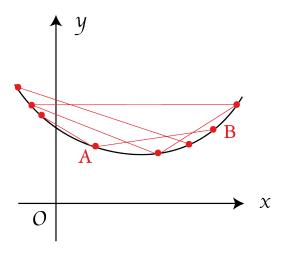


Fonction convexe

Soit f une fonction définie et deux fois dérivable sur un intervalle I. Soit (C_f) sa courbe représentative dans un repère. On note f' sa dérivée et f'' sa dérivée seconde.


f convexe sur l'intervalle I \Leftrightarrow f''(x) > 0 pour tout $x \in I$

X	Intervalle I
Signe de $f''(x)$	+


f convexe sur l'intervalle I \Leftrightarrow f' croissante sur I

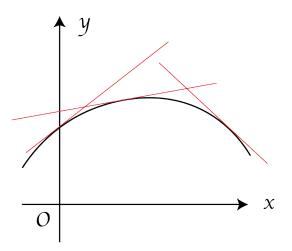
X	Intervalle I
f'(x)	———

f convexe sur l'intervalle I \Leftrightarrow (C_f) est au-dessus de toutes ses tangentes

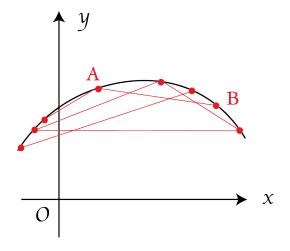
f convexe sur l'intervalle I $\Leftrightarrow \forall a \in I$, $\forall b \in I$, la portion de la courbe (C_f) située entre les points A(a; f(a)) et A(b; f(b)) est en dessous de la sécante (AB).

Fonction concave

Soit f une fonction définie et deux fois dérivable sur un intervalle I. Soit (C_f) sa courbe représentative dans un repère. On note f' sa dérivée et f'' sa dérivée seconde.


f concave sur l'intervalle I $\Leftrightarrow f''(x) < 0$ pour tout $x \in I$

X	Intervalle I
Signe de $f''(x)$	-


f concave sur l'intervalle I \Leftrightarrow f' décroissante sur I

X	Intervalle I
f'(x)	—

f concave sur l'intervalle I \Leftrightarrow (C_f) est en dessous de toutes ses tangentes

f concave sur l'intervalle $I \Leftrightarrow \forall a \in I$, $\forall b \in I$, la portion de la courbe (C_f) située entre les points A(a; f(a)) et A(b; f(b)) est au-dessus de la sécante (AB).

