équations différentielles

Exercice 1

On considère l'équation différentielle (E): 6y' + 8y = 0.

Démontrer que la fonction h définie par $h(x) = e^{\frac{1-4x}{3}}$ est une solution particulière de l'équation différentielle (E).

Exercice 2

On considère l'équation différentielle (E): y' = 3y + 6.

Démontrer que la fonction h définie par $h(x) = e^{3x+1} - 2$ est une solution particulière de l'équation différentielle (E).

Exercice 3

Résoudre sur l'ensemble des réels l'équation différentielle $(E_1): y' = 5y$.

Exercice 4

Résoudre sur l'ensemble des réels l'équation différentielle $(E_2): 4y' + 3y = 0$.

Exercice 5

Résoudre sur l'ensemble des réels l'équation différentielle $(E_3): y' = -y + 2$.

Exercice 6

On considère l'équation différentielle $(E): y' - \frac{1}{2}y = \frac{1}{2}x$.

- 1. Vérifier que la fonction g définie par g(x) = -x 2 est solution de l'équation (E).
- 2. Déterminer toutes les solutions de l'équation (E).
- 3. Déterminer l'unique solution h de l'équation (E) telle que h(2) = 0.

Exercice 7

On considère l'équation différentielle $(E): y'-2y=e^{2x}$.

On admet que la fonction g définie par $g(x) = xe^{2x}$ est une solution de l'équation (E).

On note (E_0) l'équation différentielle : y' - 2y = 0.

Démontrer que : f solution de $(E) \Leftrightarrow f - g$ solution de (E_0) .