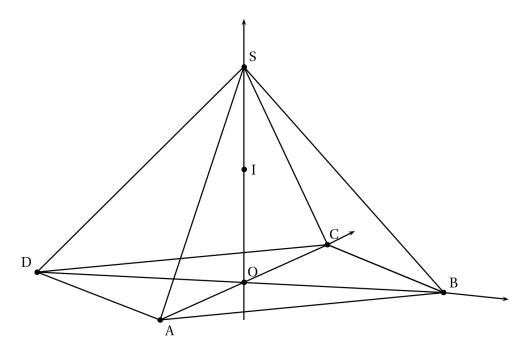


On considère la pyramide régulière SABCD de sommet S constituée de la base carrée ABCD et de triangles équilatéraux représentée ci-dessous.



Le point O est le centre de la base ABCD avec OB = 1.

On rappelle que le segment [SO] est la hauteur de la pyramide et que toutes les arêtes ont la même longueur.

- 1. Justifier que le repère $(O; \overrightarrow{OB}, \overrightarrow{OC}, \overrightarrow{OS})$ est orthonormé. Dans la suite de l'exercice, on se place dans le repère $(O; \overrightarrow{OB}, \overrightarrow{OC}, \overrightarrow{OS})$.
- **2.** On définit le point K par la relation $\overrightarrow{SK} = \frac{1}{3}\overrightarrow{SD}$ et on note I le milieu du segment [SO].
 - a. Déterminer les coordonnées du point K.
 - **b.** En déduire que les points B, I et K sont alignés.
 - **c.** On note L le point d'intersection de l'arête [SA] avec le plan (BCI). Justifier que les droites (AD) et (KL) sont parallèles.
 - d. Déterminer les coordonnées du point L.
- **3.** On considère le vecteur \overrightarrow{n} $\begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$ dans le repère $(O; \overrightarrow{OB}, \overrightarrow{OC}, \overrightarrow{OS})$.
 - **a.** Montrer que \overrightarrow{n} est un vecteur normal au plan (BCI).
 - **b.** Montrer que les vecteurs \overrightarrow{n} , \overrightarrow{AS} et \overrightarrow{DS} sont coplanaires.
 - **c.** Quelle est la position relative des plans (BCI) et (SAD)?*