Dossier: Propriété des coefficients binomiaux

1. Le triangle de Pascal

Les coefficients qui apparaissent dans le triangle de Pascal sont appelés coefficients binomiaux. Nous les retrouvons dans le développement d'un binôme élevé à une puissance donnée.

Ces coefficients sont égaux au nombre de combinaisons de k éléments distincts choisis parmi n éléments.

Nous avons la relation fondamentale: $\binom{n}{k} = \frac{n!}{(n-k)!k!}$

Propriété 1

Pour tout
$$n \ge 1$$
, $\binom{n}{0} = \binom{n}{n} = 1$

Propriété 2

Pour tout
$$n \ge 1$$
, nous avons : $\binom{n}{1} = \binom{n}{n-1} = n$

Propriété 3

Pour tout $n \ge 1$, $0 \le k \le n$, nous avons la relation : $\binom{n}{k} = \binom{n}{n-k}$

<u>Propriété 4</u>

Pour tout
$$n \ge 1$$
, $0 \le k \le n$, nous avons : $\binom{n}{k} + \binom{n}{k+1} = \binom{n+1}{k+1}$

Application

Pour déterminer à l'aide de la calculatrice le coefficient $\binom{7}{3}$, on tape 7 nCr 3 ou $_7$ C₃.

2. Formule du binôme de Newton

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$$

Propriété 5

Pour tout
$$n \ge 1$$
: $\binom{n}{0} + \binom{n}{1} + \binom{n}{2} + \ldots + \binom{n}{n-1} + \binom{n}{n} = 2^n$