Récurrence - Expert

Afin de vous aider à projeter vers l'Enseignement Supérieur, vous trouverez ci-après quatre exercices stimulants.

Les polynômes de Bernoulli

73 Polynômes de Bernoulli

On considère les polynômes B_0 , B_1 , ..., B_n , ... définis de la façon suivante : quel que soit le réel x, $B_0(x) = 1$ et $B_1(x) = x - \frac{1}{2}$ et pour $n \ge 2$: $B'_n(x) = nB_{n-1}(x)$, $B_n(1) = B_n(0)$.

1. Calculez B_2 , B_3 et B_4 .

Montrer, par récurrence, que pour tout $n \ge 2$, B_n est un polynôme de degré n.

2. Calculer, pour x réel, les expressions suivantes :

$$B_0(x+1) - B_0(x)$$
; $B_1(x+1) - B_1(x)$; $B_2(x+1) - B_2(x)$; $B_3(x+1) - B_3(x)$; $B_4(x+1) - B_4(x)$.

Quelle conjecture peut-on faire?

3. Montrer par récurrence que pour tout entier naturel non nul *n* :

$$B_n(x+1) - B_n(x) = nx^{n-1}$$
 quel que soit le réel x.

4. Calculer, à l'aide de B_n , l'entier naturel $\sum_{k=0}^{k=p} k^{n-1}$.

5. Applications

a. Donner une expression de
$$\sum_{k=0}^{k=p} k^3$$
.

b. Après avoir calculé B_5 , donner une expression de $\sum_{k=p}^{k=p} k^4$.