NUMBER THEORY

GEORGE E. ANDREWS

Evan Pugh Professor of Mathematics Pennsylvania State University

1-1 PRINCIPLE OF MATHEMATICAL INDUCTION

Let us try to answer the following question: What is the sum of all integers from one through n, for any positive integer n? If n=1, the sum equals 1 because 1 is the only summand. The answer we seek is a formula that will enable us to determine this sum for each value of n without having to add the summands.

Table 1-1 lists the sum S_n of the first n consecutive positive integers for values of n from 1 through 10. Notice that in each case S_n equals one-half the product of n and the next integer; that is,

$$S_n = \frac{n(n+1)}{2} \tag{1-1-1}$$

for $n = 1, 2, 3, \ldots, 10$. Although this formula gives the correct value of S_n for the first ten values of n, we cannot be sure that it holds for n greater than 10.

To construct Table 1-1, we do not need to compute S_n each time by adding the first n positive integers. Having obtained values of S_n

Table 1-1: Sum S_n of the First n Consecutive Positive Integers.

n	S _n	n	S _n
1	1	6	21
3	6	8	28 36
4 5	10 15	9 10	45 55

for n less than or equal to some integer k, we can determine S_{k+1} simply by adding (k+1) to S_k :

$$S_{k+1} = S_k + (k+1).$$

This last approach suggests a way of verifying equation (1-1-1). Suppose we know that formula (1-1-1) is true for $n \le k$, where k is a positive integer. Then we know that

$$S_k = \frac{k(k+1)}{2},$$

and so

$$S_{k+1} = S_k + (k+1)$$

$$= \frac{k(k+1)}{2} + (k+1)$$

$$= \left(\frac{k}{2} + 1\right)(k+1)$$

$$= \frac{(k+2)(k+1)}{2},$$

that is,

$$S_{k+1} = \frac{(k+1)((k+1)+1)}{2}.$$

The last equation is the same as equation (1-1-1) except that n is replaced by k+1.

We have proved that if equation (1-1-1) holds for $n \le k$, then it holds for n = k+1, and we have already verified that equation (1-1-1) holds for $n = 1, 2, \ldots, 10$. Therefore, by the preceding argument, we conclude that equation (1-1-1) is also correct for n = 11. Since it holds for $n = 1, 2, \ldots, 11$, the same process shows that it is correct for n = 12. Since it is true for $n = 1, 2, \ldots, 12$, it is true for n = 13, and so on. We can describe the principle underlying the foregoing argument in various ways. The following formulation is the most appropriate for our purposes.

PRINCIPLE OF MATHEMATICAL INDUCTION: A statement about integers is true for all integers greater than or equal to 1 if

- (i) it is true for the integer 1, and
- (ii) whenever it is true for all the integers 1, 2, ..., k, then it is true for the integer k + 1.

By "a statement about integers" we do not necessarily mean a formula. A sentence such as " $n(n^2-1)(3n+2)$ is divisible by 24" is also

Éléments sous droits o

1-1 PRINCIPLE OF MATHEMATICAL INDUCTION

acceptable (see Exercise 17 of this section). The assumption that "the statement is true for n = 1, 2, ..., k" will often be referred to as the induction hypothesis. Sometimes the role 1 plays in the Principle will be replaced by some other integer, say b; in such instances the principle of mathematical induction establishes the statement for all integers $n \ge b$.

5