proite et plan dans l'espace

On suppose l'espace rapporté à un repère orthonormé direct $(0; \vec{\imath}, \vec{\jmath}, \vec{k})$.

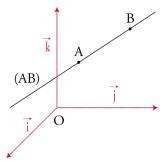
caractérisation d'une droite

Caractérisation n°1

Une droite (D) de l'espace peut être définie d'une manière unique par la donnée de deux points.

Exemple

La droite (AB) est la droite qui passe par les points A et B. Elle est unique.



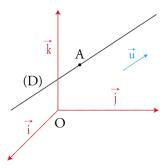
On dit que le vecteur \overrightarrow{AB} est un vecteur directeur de la droite. Tout vecteur \overrightarrow{u} colinéaire à \overrightarrow{AB} est aussi un vecteur directeur de la droite (AB).

Caractérisation n°2

Une droite (D) de l'espace peut être définie d'une manière unique par la donnée d'un point et d'un vecteur directeur. Ce vecteur directeur "dirige" la droite.

Exemple

La droite (D) est la droite qui passe par le point A et qui est dirigée par le vecteur \vec{u} .



Tout vecteur colinéaire au vecteur \vec{u} est aussi un vecteur directeur de la droite (D).

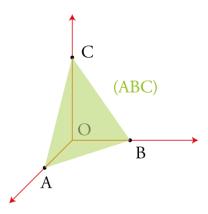
caractérisation d'un plan

Caractérisation n°1

Un plan (P) de l'espace peut être défini d'une manière unique par la donnée de trois points distincts.

Exemple

Les trois points A, B et C distincts définissent un plan nommé (ABC).

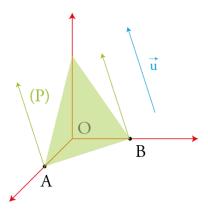


Caractérisation n°2

Un plan (P) de l'espace peut être défini d'une manière unique par la donnée de deux points distincts et d'un vecteur non colinéaire au vecteur formé par les deux points.

Exemple

Les deux points A et B distincts et le vecteur \vec{u} définissent un plan (P).



Caractérisation n°3

Un plan (P) de l'espace peut être défini d'une manière unique par la donnée d'un point et de deux vecteurs non colinéaires.

Exemple

Le point A et les deux vecteurs \vec{u} et \vec{v} non colinéaires définissent un plan (P).

